AISI STANDARD

Supplement 2 to the
North American Standard for
Cold-Formed Steel Framing -
Truss Design

2007 Edition

Endorsed by Steel Framing Alliance
DISCLAIMER

The material contained herein has been developed by the American Iron and Steel Institute Committee on Framing Standards. The Committee has made a diligent effort to present accurate, reliable, and useful information on cold-formed steel framing design and installation. The Committee acknowledges and is grateful for the contributions of the numerous researchers, engineers, and others who have contributed to the body of knowledge on the subject. Specific references are included in the Commentary.

With anticipated improvements in understanding of the behavior of cold-formed steel framing and the continuing development of new technology, this material will become dated. It is anticipated that AISI will publish updates of this material as new information becomes available, but this cannot be guaranteed.

The materials set forth herein are for general purposes only. They are not a substitute for competent professional advice. Application of this information to a specific project should be reviewed by a design professional. Indeed, in many jurisdictions, such review is required by law. Anyone making use of the information set forth herein does so at their own risk and assumes any and all liability arising therefrom.
PREFACE

The American Iron and Steel Institute Committee on Framing Standards has developed Supplement 2 to AISI S214-07, the North American Standard for Cold-Formed Steel Framing – Truss Design, 2007 Edition, to better describe design responsibilities and criteria for loading, manufacturing quality, installation and bracing.

This Supplement 2 to AISI S214-07 replaces Supplement 1 to AISI S214-07.

This Supplement revises and replaces Chapters A, B, C, E and F of AISI S214-07.

The Committee acknowledges and is grateful for the contributions of the numerous engineers, researchers, producers and others who have contributed to the body of knowledge on the subjects. The Committee wishes to also express their appreciation for the support of the Steel Framing Alliance.

The Committee acknowledges the significant investment and guidance provided by the Construction Market Council of the Steel Market Development Institute, a business unit of AISI.
AISI COMMITTEE ON FRAMING STANDARDS

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Haws, Chairman</td>
<td>NUCON STEEL</td>
</tr>
<tr>
<td>Steve Fox, Vice Chairman</td>
<td>Canadian Sheet Steel Building Institute</td>
</tr>
<tr>
<td>Jay Larson, Secretary</td>
<td>American Iron and Steel Institute</td>
</tr>
<tr>
<td>Don Allen</td>
<td>Steel Stud Manufacturers Association</td>
</tr>
<tr>
<td>Bill Babich</td>
<td>ITW Building Components Group</td>
</tr>
<tr>
<td>John Butts</td>
<td>John F. Butts & Associates</td>
</tr>
<tr>
<td>Brad Cameron</td>
<td>Keymark Engineering</td>
</tr>
<tr>
<td>Richard Chisholm</td>
<td>Lacerte Builders</td>
</tr>
<tr>
<td>Nader Elhajj</td>
<td>FrameCAD Solutions</td>
</tr>
<tr>
<td>Jeff Ellis</td>
<td>Simpson Strong-Tie</td>
</tr>
<tr>
<td>Ray Frobosilo</td>
<td>Super Stud Building Products</td>
</tr>
<tr>
<td>Michael Gardner</td>
<td>Gypsum Association</td>
</tr>
<tr>
<td>Greg Greenlee</td>
<td>USP Structural Connectors</td>
</tr>
<tr>
<td>Jeff Klaiman</td>
<td>ADTEK Engineers</td>
</tr>
<tr>
<td>Roger LaBoube</td>
<td>University of Missouri-Rolla</td>
</tr>
<tr>
<td>John Matsen</td>
<td>Matsen Ford Design Associates</td>
</tr>
<tr>
<td>Kenneth Pagano</td>
<td>Scosta Corporation</td>
</tr>
<tr>
<td>Mike Pellock</td>
<td>Aegis Metal Framing</td>
</tr>
<tr>
<td>Nabil Rahman</td>
<td>The Steel Network</td>
</tr>
<tr>
<td>Greg Ralph</td>
<td>Dietrich Industries</td>
</tr>
<tr>
<td>Harry Ray</td>
<td>Allied Studco</td>
</tr>
<tr>
<td>Gary Rolih</td>
<td>Consultant</td>
</tr>
<tr>
<td>Ben Schafer</td>
<td>Johns Hopkins University</td>
</tr>
<tr>
<td>Fernando Sesma</td>
<td>California Expanded Metal Products</td>
</tr>
<tr>
<td>Sutton Stephens</td>
<td>Kansas State University</td>
</tr>
<tr>
<td>Tom Trestain</td>
<td>T.W.J. Trestain Structural Engineering</td>
</tr>
<tr>
<td>Steven Walker</td>
<td>Steven H. Walker, P.Eng.</td>
</tr>
<tr>
<td>Lei Xu</td>
<td>University of Waterloo</td>
</tr>
<tr>
<td>Rahim Zadeh</td>
<td>Marino\Ware</td>
</tr>
</tbody>
</table>

This document is copyrighted. Any redistribution is prohibited.
TRUSS DESIGN SUBCOMMITTEE

Bill Babich, Chairman ITW Building Components Group
Jay Larson, Secretary American Iron and Steel Institute
Don Allen Steel Stud Manufacturers Association
John Butts John F. Butts & Associates
Brad Cameron Keymark Engineering
Nader Elhajj FrameCAD Solutions
Kirk Grundahl WTCA – Representing the Structural Building Component Industry
Jeff Klaiman ADTEK Engineers
Roger LaBoube University of Missouri-Rolla
Richard Layding NUCONSTEEL
Kenneth Pagano Scosta Corporation
Mike Pellock Aegis Metal Framing
Harry Ray Allied Studco
Steven Walker Steven H. Walker, P.Eng.
Lei Xu University of Waterloo
Rahim Zadeh Marino\Ware

This document is copyrighted. Any redistribution is prohibited.
TABLE OF CONTENTS

SUPPLEMENT 2 TO THE
NORTH AMERICAN STANDARD FOR COLD-FORMED STEEL FRAMING -
TRUSS DESIGN

DISCLAIMER	ii
PREFACE	iii
AISI COMMITTEE ON FRAMING STANDARDS	iv
TRUSS DESIGN SUBCOMMITTEE	v
A. GENERAL	1
A1 Scope	1
A2 Definitions	1
A3 Loads and Load Combinations	2
A4 Referenced Documents	2
B. TRUSS DESIGN RESPONSIBILITIES	3
B1 Design of Trusses	3
B2 Responsibilities of Truss Design Engineer/ Truss Designer	3
B2.1 Preparation of Truss Design Drawings	3
B2.2 Truss Design Criteria, Assumptions and Calculations	3
B2.3 Truss Design Drawings	3
B2.4 Truss Design Drawings Seal and Signature	4
B3 Responsibilities of Truss Manufacturer	4
B3.1 Truss Design Criteria and Requirements	4
B3.2 Communication to Truss Design Engineer	4
B3.3 Truss Placement Diagram	5
B3.4 Truss Submittal Package	5
B3.5 Reliance on Construction Documents	5
B4 Responsibilities of Building Designer/ Registered Design Professional for the Building	5
B4.1 Preparation of Construction Documents	5
B4.2 Deferred Submittals	5
B4.3 Review Submittal Packages	5
B4.4 Required Information in Construction Documents	5
B4.5 Permanent Individual Truss Member Restraint/ Bracing	6
B5 Responsibilities of Contractor	6
B5.1 Information Provided to Truss Manufacturer	6
B5.2 Information Provided to Building Designer/ Registered Design Professional	7
B5.3 Truss Submittal Package Review	7
B5.4 Means and Methods	7
B5.5 Truss Installation	7
B5.6 Alterations to Trusses	7
B6 Design of Permanent Individual Truss Member Restraint/ Bracing	7
C. RESERVED	8
E. QUALITY CRITERIA FOR STEEL TRUSSES	9
E1 Manufacturing Quality Criteria ... 9
E2 Member Identification .. 9
E3 Assembly .. 9

F. TRUSS INSTALLATION ... 10
 F1 Installation Tolerances .. 10
 F1.1 Straightness .. 10
 F1.2 Plumbness ... 10
 F1.3 Top Chord Bearing Trusses .. 10
This Page Left Intentionally Blank
SUPPLEMENT 2 TO THE
NORTH AMERICAN STANDARD FOR COLD-FORMED STEEL FRAMING -
TRUSS DESIGN

A. GENERAL

A1 Scope

The design of cold-formed steel trusses for load carrying purposes in buildings shall be in accordance with AISI S100 [CSA S136] and AISI S200, except as modified by the provisions of this standard. This standard shall also apply to manufacturing, quality criteria, installation and testing as they relate to the design of cold-formed steel trusses.

This standard shall not preclude the use of other materials, assemblies, structures or designs not meeting the criteria herein, when the other materials, assemblies, structures or designs demonstrate equivalent performance for the intended use to those specified in this standard. Where there is a conflict between this standard and other reference documents the requirements contained within this standard shall govern.

The responsibilities defined in this standard are not intended to preclude alternate provisions as agreed upon by the parties involved.

This standard shall include Sections A through G inclusive.

A2 Definitions

Where terms appear in this standard in italics, such terms shall have meaning as defined in this section or in AISI S200. Terms included in square brackets are specific to LSD terminology. Terms not italicized shall have the ordinary accepted meaning in the context for which they are intended.

Building Designer. Owner of the building or the person that contracts with the owner for the design of the framing structural system and/or who is responsible for the preparation of the construction documents. When mandated by the legal requirements, the building designer shall be a registered design professional.

Construction Documents. Written, graphic and pictorial documents prepared or assembled for describing the design (including the framing structural system), location and physical characteristics of the elements of a building necessary to obtain a building permit and construct a building.

Registered Design Professional. Architect or engineer, who is licensed to practice their respective design profession as defined by the legal requirements of the jurisdiction in which the building is to be constructed.

Truss Design Engineer. Person who is licensed to practice engineering as defined by the legal requirements of the jurisdiction in which the building is to be constructed and who supervises the preparation of the truss design drawings.

Truss Designer. Person responsible for the preparation of the truss design drawings.

Truss Design Drawing. Written, graphic and pictorial depiction of an individual truss.

Truss Member. A chord member or web member of a truss.

Truss Submittal Package. Package consisting of each individual truss design drawing, and, as
applicable, the truss placement diagram, the cover/truss index sheet, permanent individual truss member restraint/bracing details designed in accordance with generally accepted engineering practice, applicable permanent individual truss member restraint/bracing details, and any other structural details germane to the trusses.

A3 Loads and Load Combinations

Buildings or other structures, and all parts therein, shall be designed to safely support all loads that are expected to affect the structure during its life in accordance with the applicable building code. In the absence of an applicable building code, the loads, forces, and combinations of loads shall be in accordance with accepted engineering practice for the geographical area under consideration as specified by the applicable sections of Minimum Design Loads for Buildings and Other Structures (ASCE 7) in the United States and Mexico, and the National Building Code of Canada (NBCC) in Canada.

A4 Referenced Documents

The following documents or portions thereof are referenced within this standard and shall be considered part of the requirements of this document.

1. AISI S100-07, North American Specification for the Design of Cold-Formed Steel Structural Members, American Iron and Steel Institute, Washington, DC.
2. AISI S200-07, North American Standard for Cold-Formed Steel Framing - General Provisions, American Iron and Steel Institute, Washington, DC.
3. AISI S902-02, Stub-Column Test Method for Effective Area of Cold-Formed Steel Columns, American Iron and Steel Institute, Washington, DC.
4. AISI S905-02, Test Methods for Mechanically Fastened Cold-Formed Steel Connections, American Iron and Steel Institute, Washington, DC.
5. ASCE 7-05 Including Supplement No. 1, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA.
B. TRUSS DESIGN RESPONSIBILITIES

B1 Design of Trusses

Cold-formed steel trusses shall be designed in accordance with one of the following methods:

(a) **Designed by a Design Professional.** If the building designer or a delegated registered design professional designs the cold-formed steel trusses, all design criteria, details and specifications with respect to the trusses shall be indicated on the construction documents or contract as required by the applicable building code.

(b) **Designed by a Truss Design Engineer or Truss Designer.** Cold-formed steel truss design shall be in accordance with Sections B2.1, B2.2 and B2.3.

B2 Responsibilities of Truss Design Engineer/Truss Designer

B2.1 Preparation of Truss Design Drawings

B2.1.1 Truss Design Engineer

The truss design engineer shall supervise the preparation of the truss design drawings based on the truss design criteria and requirements set forth in the construction documents or as otherwise set forth in writing by the registered design professional for the building as supplied to the truss design engineer by the contractor through the truss manufacturer.

B2.1.2 Truss Designer

The truss designer shall be responsible for the individual truss component design and the preparation of the truss design drawings based on the truss design criteria and requirements set forth in the construction documents or as otherwise set forth in writing by the building designer as supplied to the truss designer by the truss manufacturer.

B2.2 Truss Design Criteria, Assumptions and Calculations

The truss designer shall make available as part of the truss submittal package, upon request, design calculations, including the following:

1. loads and load combinations considered;
2. axial forces, moments, and shears resulting from the applied loads and load combinations; and/or
3. design assumptions.

B2.3 Truss Design Drawings

The truss design drawings shall consist of the individual truss design drawings and referenced details, if any. The truss design drawings shall be part of the truss submittal package and include, at a minimum, the information specified below:

1. applicable building code used for design, unless specified on a cover/truss index sheet;
2. slope or depth, span, and spacing;
3. number of plies if greater than one;
4. bearing locations and minimum bearing lengths;

This document is copyrighted. Any redistribution is prohibited.
(5) design loading(s) as applicable, including:
 (a) top chord roof or floor live load;
 (b) top chord roof snow load;
 (c) top chord dead load;
 (d) bottom chord live load;
 (e) bottom chord dead load;
 (f) additional loads and locations;
 (g) environmental design loads (e.g., wind and snow) and all applicable factors as required to calculate the truss loads; and
 (h) other lateral loads, including drag strut loads;

(6) reaction forces and direction, including maximum downward, lateral and uplift reaction forces, where applicable, based on nominal [specified] loads;

(7) location of all truss member connections;

(8) gusset plate locations, sizes, and material specifications;

(9) fastening type, size, quantities, and locations;

(10) shape and material specification for each truss member;

(11) maximum axial compressive force in all truss members based on nominal [specified] loads;

(12) truss-to-truss connection and truss field assembly requirements;

(13) calculated span-to-deflection ratio and/or maximum vertical and horizontal deflection for nominal [specified] live and total load, as applicable;

(14) locations of required permanent individual truss member restraint in accordance with Section B6(a) or B6(c), if required; and

(15) design and details for individual truss member reinforcement in accordance with Section B6(b), if required.

B2.4 Truss Design Drawings Seal and Signature

Where required by the building designer, registered design professional for the building or the authority having jurisdiction, each individual truss design drawing shall bear the seal and signature of the truss design engineer. When an individual truss design drawing has multiple pages, only the first page shall be required to be signed and sealed by the truss design engineer. When a cover/truss index sheet is used, it shall be the only document required to be signed and sealed by the truss design engineer.

B3 Responsibilities of Truss Manufacturer

B3.1 Truss Design Criteria and Requirements

The truss manufacturer shall obtain the truss design criteria and requirements from the construction documents.

B3.2 Communication to Truss Design Engineer

The truss manufacturer shall communicate the truss design criteria and requirements to the truss design engineer or truss designer, as applicable.
B3.3 Truss Placement Diagram

Where required by the construction documents or contract, the truss manufacturer shall prepare the truss placement diagram that identifies the assumed location for each individually designated truss and references the corresponding truss design drawing. The truss placement diagram shall be permitted to include identifying marks for other products including structural elements, so that they may be more easily identified by the contractor during field installation. When the truss placement diagram serves only as a guide for truss installation and requires no engineering input, it does not require the seal of any truss design engineer or registered design professional.

B3.4 Truss Submittal Package

Where required by the construction documents or contract or the building official, the truss manufacturer shall provide the appropriate truss submittal package to one or more of the following: building official; building designer; registered design professional for the building and/or contractor for review and/or approval.

B3.4.1 Information Provided to the Building Designer/Registered Design Professional for the Building

The contractor, after reviewing and/or approving the truss submittal package, shall forward the truss submittal package for review by the building designer and/or registered design professional for the building.

B3.5 Reliance on Construction Documents

The truss manufacturer shall be permitted to rely on the accuracy and completeness of information furnished in the construction documents or otherwise furnished in writing by the building designer, registered design professional for the building and/or contractor.

B4 Responsibilities of Building Designer/Registered Design Professional for the Building

B4.1 Preparation of Construction Documents

The construction documents shall be prepared by the building designer or registered design professional for the building and shall be of sufficient clarity to indicate the location, nature and extent of the work proposed in accordance with the applicable building code.

B4.2 Deferred Submittals

The building designer or registered design professional for the building shall list the deferred submittals on the construction documents. The building designer or registered design professional shall review deferred submittals in accordance with Section B4.3.

B4.3 Review Submittal Packages

The building designer or registered design professional for the building shall review the truss submittal package. All such submittals shall include a notation indicating that they have been reviewed.

B4.4 Required Information in Construction Documents

The building designer or registered design professional for the building, through the construction documents, shall provide information sufficiently accurate and reliable to be used
for facilitating the supply of the structural elements and other information for developing the
design of the trusses for the building, and shall provide the following:

1. All truss and structural element orientations and locations;
2. Information to fully determine all truss profiles;
3. All structural element and truss support locations and bearing conditions;
4. The location, direction, and magnitude of all dead, live, and lateral loads applicable
to each truss including, but not limited to, loads attributable to: roof, floor, partition,
mechanical, fire sprinkler, attic storage, rain and ponding, wind, snow (including
snow drift and unbalanced snow), seismic; and any other loads on the truss;
5. All truss anchorage required to resist uplift, gravity, and lateral loads consisting of
approved hardware or methods designed by a registered design professional;
6. Truss to structural element connections, but not truss-to-truss connections,
consisting of approved hardware or methods designed by a registered design
professional;
7. Permanent building stability bracing; including truss anchorage connections to the
permanent building stability bracing;
8. Criteria related to serviceability issues including:
 a. Allowable vertical, horizontal or other required deflection criteria;
 b. Any dead load and live load deflection criteria for flat roofs subject to
 ponding loads;
 c. Any differential deflection criteria from truss-to-truss or truss-to-adjacent
 structural member;
 d. Any deflection and vibration criteria for floor trusses including any
 strongback bridging requirements or any dead load and live load deflection
 criteria for floor trusses supporting stone or ceramic tile finishes; and
 e. Anticipated moisture, temperature, corrosive chemicals and gases expected
 to affect the trusses and requirements for any additional corrosion protection.

B4.5 Permanent Individual Truss Member Restraint/Bracing

The building designer and/or the registered design professional for the building shall be
permitted to specify the method of the permanent individual truss member restraint/bracing
in accordance with Section B6.

B5 Responsibilities of Contractor

B5.1 Information Provided to Truss Manufacturer

The contractor shall provide to the truss manufacturer a copy of all construction documents
pertinent to the framing structural system and the design of the trusses (i.e., framing plans,
specifications, details, structural notes), and the name of the building designer and/or the
registered design professional for the building if not noted on the construction documents.

Amended construction documents upon approval through the plan review/permitting
process shall be immediately communicated to the truss manufacturer.

This document is copyrighted. Any redistribution is prohibited.
B5.2 Information Provided to Building Designer/ Registered Design Professional

The contractor, after approving the truss submittal package, shall forward the truss submittal package for review by the building designer and/ or the registered design professional for the building.

B5.3 Truss Submittal Package Review

The contractor shall not proceed with the truss installation until the truss submittal package has been reviewed by the building designer and/ or the registered design professional for the building.

B5.4 Means and Methods

The contractor is responsible for the construction means, methods, techniques, sequences, procedures, programs, and safety in connection with the receipt, storage, handling, installation, restraining, and bracing of the trusses.

B5.5 Truss Installation

The contractor shall ensure that the building support conditions are of sufficient strength and stability to accommodate the loads applied during the truss installation process. Truss installation shall comply with installation tolerances shown in the standard industry details. Permanent individual truss member restraint/ bracing for the completed building in accordance with Section B6 and any other construction work related directly or indirectly to the trusses shall be installed by the contractor.

B5.6 Alterations to Trusses

Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in any way without written concurrence and approval of any registered design professional. Alterations resulting in the addition of loads to any member (i.e., HVAC equipment, piping, additional roofing or insulation, etc.) shall not be permitted without verification by the truss design engineer or truss designer that the truss is capable of supporting such additional loading.

B6 Design of Permanent Individual Truss Member Restraint/ Bracing

Where permanent individual truss member restraint/ bracing is required, it shall be accomplished by one of the following methods:

(a) **Standard Industry Details.** Standard industry permanent individual truss member restraint/ bracing details supplied in accordance with B3.4.

(b) **Substitution with Reinforcement.** Truss member reinforcement designed by the truss design engineer or truss designer to eliminate the need for permanent individual truss member restraint/ bracing. The permanent individual truss member reinforcement design and details shall be noted/ shown on the truss design drawings or on supplemental truss member buckling reinforcement details provided by the truss design engineer or truss designer.

(c) **Project Specific Design.** A project specific permanent individual truss member restraint/ bracing design specified by any registered design professional, as specified in the contract documents and/ or construction documents, and supplied in accordance with B3.4.
C. RESERVED
E. QUALITY CRITERIA FOR STEEL TRUSSES

E1 Manufacturing Quality Criteria

The truss manufacturer shall manufacture the trusses in accordance with the final truss design drawings, using the quality criteria required by the manufacturer's quality control program unless more stringent quality criteria is required by the owner in writing or through the construction documents.

E2 Member Identification

Truss chord members and web members shall be identified in accordance with the Product Identification requirements for framing members defined in AISI S200.

E3 Assembly

Trusses shall have steel members that are accurately cut, in accordance with the truss design, so that the assembled truss has close fitting steel members. The maximum gap between web members shall not exceed ½ inch (12.7 mm) unless approved by the truss design engineer or truss designer. The location of chord members, web members, and joints shall be as specified in the truss design.

Truss dimensions which vary from the truss design shall not exceed the tolerances shown in Table E8. Inaccuracies exceeding these allowable tolerances shall be acceptable upon approval and follow-up documentation by the truss design engineer or truss designer. Any shop modifications or repairs shall be documented by the truss design engineer or truss designer.

Table E8

<table>
<thead>
<tr>
<th>Manufacturing Tolerances For Finished Truss Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length1</td>
</tr>
<tr>
<td>Up to 30 ft (9.14 m)</td>
</tr>
<tr>
<td>Over 30 feet (9.14 m)</td>
</tr>
<tr>
<td>Height2</td>
</tr>
<tr>
<td>Up to 5 feet (1.52 m)</td>
</tr>
<tr>
<td>Over 5 feet (1.52 m)</td>
</tr>
</tbody>
</table>

1 Length, for manufacturing tolerance purposes, is the overall length of the truss unit, excluding overhangs, and extensions.

2 Height, for manufacturing tolerances purposes, is the overall height of the truss unit measured from the top of the top chord member to the bottom of the bottom chord member at the highest point of the truss, excluding projections above the top chord member and below the bottom chord member, overhangs, and extensions.
F. TRUSS INSTALLATION

F1 Installation Tolerances

F1.1 Straightness

Trusses shall not be installed with an overall bow or bow in any chord member or panel which exceeds the lesser of L/200 or 2 inches (50.8 mm), where L is the length of the truss, chord member, or panel in inches.

F1.2 Plumbness

Trusses shall not be installed with a variation from plumb (vertical tolerance) at any point along the length of the truss from top to bottom which exceeds 1/50 of the depth of the truss at that point or 2 inches (50.8 mm) whichever is less, unless trusses are specifically designed to be installed out of plumb.

F1.3 Top Chord Bearing Trusses

For top chord bearing trusses a maximum gap tolerance between the inside of the bearing and the first diagonal or vertical web member shall be specified in the design.